Detailed Design
	Authors
	Niv Ben-David & Michael Dimenstein
	Version
	1.0

	Created
	28/1/2012

	Last Update
	20/3/2012

	Current Status
	Final Version

Contents
1	Introduction	3
1.1	Overview	3
1.2	Design Goals and Non-goals	3
1.2.1	Goals	3
1.2.2	Non-goals	3
1.3	Dependencies, Assumptions and Design Constraints	4
1.3.1	Dependencies	4
1.3.2	Assumptions	4
1.3.3	Design Constraints	4
1.4	Audience	4
1.5	Issues	4
1.6	To-Do List	4

	Hitch!
	Detailed Design

	Hitch!
	Detailed Design

 (
11
)
[bookmark: _Toc315530661]Introduction
[bookmark: _Toc315530662]Overview
Hitch! is a socially-based transportation solution devised to connect between consumers of (one-time and/or repeating) rides and the providers of such rides such as, but not limited to, private car owners, taxi drivers/stations, car-pooling companies, etc.
Unlike other hitchhiking projects abundant on the net, Hitch! gives the user a large suite of different ways to get from point A to point B, everything in order to provide the user with the product which they require.
[bookmark: _Toc315530663]Design Goals and Non-goals
[bookmark: _Toc315530664]Goals
Hitch! will define a connection between two types of users: a passenger and a driver, as well as the ‘Currency’ which they trade – a ride. A ride can be either one-time or repeating.
The application will support the following features:
1. Create a new user profile.
2. Create a new one-time ride.
3. Request to join an existing ride.
4. Approve/reject a join request to a ride.
5. Search for a ride by a pre-defined set of conditions (time, origin, destination, etc.).
In addition, the application would be able identify a user by their Facebook profile and register them via the data provided by the Facebook application APIs (Open Graph or FQL). Users will be able to see other users with whom they have mutual friends, interests, workplaces, etc.
The application will have a suggestion functionality that will enable users to see rides happening near predefined places of interest.
[bookmark: _Toc315530665]Non-goals
The application may not, at the first stage, support secondary features such as:
1. Deleting an existing user.
2. Editing an existing user account.
3. Deleting an existing ride.
4. Canceling a join request.
Also, the application would not be able to connect to other data providers (like Twitter or Google+), though the option to extend the database to those providers will be considered during the design and implementation processes.
[bookmark: _Toc315530666]Dependencies, Assumptions and Design Constraints
[bookmark: _Toc315530667]Dependencies
In order to connect between the smartphone end-point and the server an internet connection is required. The application may also depend on a location provider (such as a GPS) system in the smartphone and 3rd -party map providers (such as the stock map application of the Windows Phone or Google Maps).
As a consumer of social network data, the application will depend on the data provided by the Facebook developer APIs (Open Graph or FQL) and the OAuth 2.0 protocol access that data.
[bookmark: _Toc315530668]Assumptions
Since the primary users of the application in its current state can be safely assumed to be only those involved in its production and members of the Tel-Aviv University's Department of Computer Science faculty, input from the user will be treated as safe and not intended to attack or harm the application or server; only basic safety checks will be performed on user input on the site or application.
[bookmark: _Toc315530669]Design Constraints
Though the application will support a requested/proposed fee field for rides, the exchange system itself will not be implemented and will be assumed to work without interference from the application.
Also, as the application cannot control users’ behavior, users will be assumed to behave accordingly, i.e. pay their passengers fee, arrive to their meeting points (either as drivers or passengers) on time, etc. No functionality to "report" misbehaving users will be implemented.
[bookmark: _Toc315530670]Audience
The application is intended for users who are seeking either one-time rides to some destination or a repeating ride to a usual location as part of their routine (work, etc.) as well as for drivers who wish to add passengers to rides they already planned (either as their routine or occasionally) that will accompany them and share the ride’s expenses, or in the case of professional drivers such as bus or cab drivers, pay the ride's fee.
[bookmark: _Toc315530671]Issues
There are no fundamental issues foreseen at the current stage.
[bookmark: _Toc315530672]To-Do List
	Item
	Status

Logical Architecture
Application Context
 (
Azure
Hitch
!
 Server
Network Connection
Hitch
!

Application
Phone’s GPS
Social Networks’ APIs
Facebook
Google+
Twitter
Map Application
)
Design
Classes
Diagram
[image:]

[image:]
[image:][image:]
Details
1. Hitch (namespace)
1.1. Hitcher (class)
The basic entity used by both the server and application to handle the different users, rides, groups, etc. Each object holds a list of Aspect pointers that represent the various attributes dynamically associated with it (for example, an object with the Follower aspect can follow and be followed by other objects).
1.2. Aspect (namespace)
1.2.1. Base (abstract class)
The base class for all the various aspect classes, defining the interface with which the Hitcher objects interact with their composing aspects.
1.2.2. Database (abstract class)
A base class for aspects linked with a database record, implementing utility functions for such classes.
1.2.3. Group (class)
A Hitcher with the Group aspect represents an aggregation of other Hitcher objects, delegating event handling to its members.
1.2.4. Follower (class)
An entity with the Follower aspect can follow and be followed by other objects
1.2.5. Position (class)
A Hitcher’s positional data, stored in the server’s database.
1.2.6. Auth (abstract class)
A base class for aspects holding a user’s authentication data in social networks, implementing utility functionality to gain access to the user’s social profiles.
1.2.7. Facebook/GooglePlus/Twitter (class)
Implementation of the Auth abstract for each major social network.
Database
Diagram
[image:]
Details
1. User
The application's users table, holding basic user data and defines a user entity's unique identifier.
2. PointsOfInterest
A bank of defined waypoints used to translate geo-data (latitude/longitude) to user's search text and vice-versa.
3. Ride
Each ride is stored with a uniquely generated ID and is mapped to the driver's unique ID. Route's beginning and end waypoints are stored for quick access.
4. Passenger
Each passenger request is stored as a ride-user couple, along with the request's status.
5. PickupPoints
Mid-points along a ride's route for passenger pick-ups. Driver-defined when creating/editing a ride.
6. SearchHistory
Search log, used to intelligently suggest contacting other users who've made similar searches to the user's.
7. Setting
Users' settings.
8. Status
Ride request status identifiers.
9. Notification
Device push-notifications.
Flow
Diagram
[image:]
Details
1. LoginPage
The application's login/register page. When not logged-in, every page leads back to this one.
2. Home
2.1. SearchPage
Create a new search, leads to the Results page when done.
2.2. MyRides
Shows a user's upcoming rides (both as a driver and a passenger).
2.3. SuggestionsPage
Suggested rides according to a user's points of interest.
2.4. TestNewRidePage
Create a new ride as a driver.
3. ResultsPage
A ride search results page, listing the query's contents in a list control. Each list item leads to the Ride View page. At the end of the list there's button leading to the Similar Searches page.
4. ShowRidePage
Displays a ride's details (from, to, when, etc.) for viewing only. The ride's driver's page displays a button leading the Ride Edit page.
5. GoogleMapPage
Displays a ride's route on the Google Maps control. Pickup Points can be edited from here.
6. AddAccount
A user's profile page.
7. FBLogin
A Facebook login page.
8. Settings
A user's settings page.
9. Application Bar
The application bar at the bottom of the screen always displays shortcuts to the user's profile, new ride and settings pages.
Synchronization and Protection Mechanisms
No mechanisms are planned at the moment.
Physical Architecture
There aren’t any physical devices needed aside a smartphone operating on Windows Phone 7.1.

References

1. Google Maps API
2. Facebook Open Graph API
3. [bookmark: _GoBack]WP7 Silverlight toolkit

Revision History
	Date
	Version
	Author
	Revision

	28/1/2012
	0.0
	Niv Ben-David
	Created the first document draft.

	28/1/2012
	0.1
	Niv Ben-David
	Added rudimentary class designs.

	30/1/2012
	0.1
	Miki Dimenstein
	Minor changes around the document.

	16/2/2012
	0.3
	Miki Dimenstein
	Added the database schema.

	18/2/2012
	0.3
	Niv Ben-David
	Added the Entity System class design.

	24/2/2012
	0.4
	Niv Ben-David & Miki Dimenstein
	Made a few changes to the database, decided to refer to waypoints in a separate table.

	25/2/2012
	0.5
	Miki Dimenstein
	Dropped the Entity System design for a more simple solution.

	29/2/2012
	0.6
	Miki Dimenstein
	Updated the pages flow diagram.

	1/3/2012
	0.7
	Miki Dimenstein
	Updated the Goals/No-Goals sections with an accurate description of the suggestions function.

	3/3/2012
	1.0
	Niv Ben-David
	Minor changes and document's final version.

	22/3/2012
	1.0
	Niv Ben-David
	Made sure diagrams are up-to-date with current code design.

image1.png

image2.png
0

Waypoint ®
Class

 Properties

=
=
=
=

Description
EstimatedTime
LocationLat
LocationLng
Minutes

GoogleDirection... &
Class

 Properties
2 Route
2 swtus

UserView
Class

 Properties
2 Email
2 FirsName
=]
' LostName

SettngaView &
Goss

 Properties

5 isSearchVisible
2 isTaxiDriver

Step.
Class

 Properties
2 Duration
2 EndLocation
StartLocation

EndLocation ®
Class

 Properties
= Lat
= Lng

Route
Class

 Properties
B Legs
2 Polyline
2 Summary

FavoritsView ®
Class
 Properties
= PointOflnterst
= Methods

© FavoritsView

Person
Class

 Properties

2 FullName
=]
2 isRideApproved

GoogleGeoCode... &
Class

 Properties

2 Result
2 swtus

Result
Class

 Properties

2 Fulladdress
2 Geometry

Class

 Properties
2 Favorits
2 Settings
2 UserDetails
= Methods
@ AddAccountView

StartLocation
Class

 Properties
= Lat
= Lng

PolyLine ®
Class

 Properties
2 Points

GeometryRespo...
Class

 Properties
2 Location

Location
Class

 Properties
= Lat
= Lng

Duration
Class

 Properties

= Value

Leg
Class

 Properties

=
=
=
=

Duration
EndAddress
EndLocation
Startaddress
StartLocation
Steps

E]

ShortRideEleme.... (%
Class

 Fields
Ed
Ed
Ed
Ed
Ed
Ed
Ed
Ed
Ed

 Properties

=
=
=
=
=
-

diiver
fromLocation
isDrver
people
polyLineRep
rideTime
seats
toLocation
wayPonts

Driver
FromLocation
]

IsDriver
IsTaxiDriver
People
PolyLineRep
RideTime
Seats
ToLocation
WayPoints
 Methods

5% Notiyproperty...
 Shortfidetlem.

 vents
PropertyChan;

0

image3.png
 Fields

LostUpate
& _Locationlat
Locstiontng
ot
& FomNickName
Usera

© properies

LostUpdte

Locationlat

Locationlng

Poia

PointNickName

= seia

= Methods.

CreatePointsOfl
OnLastUpdateC.
OnLastUpdateC.
OnLocationLat.
OnLocationLat.
OnLocationLng,
OnLocationLng,
OnPoildChanged
OnPoildChangi
OnPointNickNa.
OnPointNickNa.
OnUserldChan
OnUserdChan

o O 6

 Fields

Fromlat
& Fromlng
& LastUpdste
& Searchld
Tolat
Tolng
o Usels

 properties

FromLat

FromLng

LastUpdate

Searchld

Tolat

Tolng

Userld

CreateSearchHi
OnFromLatCha,
OnFromLatCha,
OnFromLngCha,
OnFromLngCha,
OnLastUpdateC.
OnLastUpdateC.
OnSearchldCha.
OnSearchldCha.
OnTolatChang
OnTolatChangi
OnTolngChang
OnTolngChang
OnUserldChan
OnUserdChan

 Fields

4P EarthsRadiusin...
= Methods

AddRideToDb
AddUser
GetlLocationBysS..
GethySuggest
GetRidesMyRid...
GetSearchResults
LoginUser
PushMessage
RegisterForRide.
SaveStatusesTo..
SpericalLawOfC..
ToRadians

image4.png
 Fields

& mappingSource
 properties
Passengers
PickUpPoints
PointsOfinrests
Rides
Searchtistories
Settings
Statuses
Users

DeletePassenger
DeletePickUpP.
DeletePointsOfl.
DeleteRide
DeleteSearchHi
DeleteSetting
DeleteStatuse
DeleteUser
HitchDB.
InsertPassenger
InsertPickUpPoi
InsertPointsOf
InsertRide
InsertSearchHis.
InsertSetting
InsertStatuse
InsertUser
OnCreated
UpdatePasseng
UpdatePickUpP
UpdatePointsO,
UpdateRide
UpdateSearchH
UpdateSetting
UpdateStatuse
UpdateUser

image5.png
. Notifcaion
& Properties
¥ Deviceld
=R
P Usedd = Navigation Properties
= Navigation Properties = passengers
. PointsOfintrest
o user
 Properties
<o i P UserFirstiome 9 Passengertd
UserLastName. P Usedd
2 LocationLat
& Properties F UserMail i Y] B locationlng F Rideld
' sSearchVisible: e B Userid 2 Statusld
9 settingsld ¥ Userd 5 LastUpdate Navigation Properties
F LastUpdate o1t Settingeld © Navigation Properties B Status
S ETaDriver LastUpdiate D = e
 Navigation Properties = Navigation Properties] User
) Users] passengers o
5] PointsOfintrests
=] Rides
5] SearchHistories
& Setting T e
PR
01 = Properties
5 RideDateTime ;. PickUpPoint
F AvailableSeats
P Rideld B Properties
Driver Ppupia
gl R Locationlat
#Tolng 5 Froming i] = Locationtng
B Userd & Tolat & Rideld
F LastUpdate ' Tolng F LastUpdate
 Navigation Properties - £ LastUpdate Navigation Properties
& e Navigation Propertes & e
[l ——
=] PickUpPoints
=] User

image6.png
AddAccount ®

Register

®

licatiorfage.

Clsss
~ Phonespplicatiorpage
Login to Facebook e
e — Cists
FBLogin ®
oot Phonespp
~ Phonespplicatiorpage
Home
Clsss
 Phonespp
‘Suggestions' ew Ride'
outon bution
SuggestionsPage % TestNewRidePage (¥
Clszs Clsss
~ Phonespplicatiorpage ~ Phonespplicatiorpage
Approve
e
Clszs

Chack rids

Class
~+ Proneapy

ShowRidePage. ©

~ PhoneApplicatiorPage

GoogleMapPage ©

Login

®

licatiorfage.

Join ride

View route

plicatiorPage:

SearchPage ©®
Class
-+ Pronesppictioreage

‘Search’ button

MyRides) (ResutsPage ©
Clsss Clsss
~ Pronespplicatiorpege | | = Phonespplcatiorpage

